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Abstract. A systematic investigation on the muon’s anomalous magnetic moment and a related lepton
flavor-violating process such as µ → eγ, τ → eγ and τ → µγ is made at the two-loop level in the
models with flavor-changing scalar interactions. The two-loop diagrams with double scalar exchanges are
studied and their contributions are found to be compatible with the ones from the Barr–Zee diagram. By
comparing with the latest data, the allowed ranges for the relevant Yukawa couplings Yij in the lepton
sector are obtained. The results show the hierarchical structure Yµe,τe � Yµτ � Yµµ in the physical basis
if ∆aµ is found to be > 50 × 10−11. It deviates from the widely used ansatz in which the off-diagonal
elements are proportional to the square root of the products of the related fermion masses. An alternative
Yukawa coupling matrix in the lepton sector is suggested to understand the current data. With such a
reasonable Yukawa coupling ansatz, the decay rate of τ → µγ is found to be near the current experiment
upper bound.

1 Introduction

Recently, the Muon g − 2 Collaboration at BNL reported
their improved result on the measurement of the muon’s
anomalous magnetic moment (g − 2) [1]. Combining with
the early measurements in CERN and BNL, the new av-
erage value of the muon’s g − 2 is as follows:

aexp
µ = (116592030 ± 80) × 10−11. (1)

This result confirmed the earlier measurement [2] with a
much higher precision. With this new result the differ-
ence between experiment and the standard model (SM)
prediction is enlarged again. The most recent analyses by
different groups resulted in

∆aµ ≡ aexp
µ − aSM

µ

=




(303.3 ± 106.9) × 10−11 [3],
(297.0 ± 107.2) × 10−11(ex) [4],
(357.2 ± 106.4) × 10−11(in) [4].

(2)

As the large g − 2 of the muon may imply the exis-
tence of new physics beyond the SM, in recent years a
large amount of work has been done in checking the new
physics contributions to g−2 of the muon by using model
dependent [5,6] and independent approaches [7].

In this work, we would like to focus on a general dis-
cussion of the models with lepton flavor-changing scalar
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interactions where the new physics contributions mainly
arise from additional Yukawa couplings. Such models may
be considered as a simple extension of the standard model
(SM) with more than one Higgs doublet φi (i > 1) but
without imposing any discrete symmetry, for example, the
extension of SM with two Higgs doublets (S2HDM) [8] as
motivated by spontaneous CP violation [9,10].

The general form of the Yukawa interaction reads

LY = ψ̄i
LY

a
ijψ

j
Rφa, (3)

where Y a
ij (i, j = 1, 2, 3) are the Yukawa coupling matri-

ces. The index a = 1, 2, · · · labels the Higgs doublets. The
behavior of the Yukawa interactions depends on the tex-
ture of the Yukawa coupling matrices. In general there are
two kinds of ansatzes on the Yukawa coupling matrices in
the mass eigenstates:
(1) Yukawa coupling matrices of the scalar interactions
are diagonal due to some discrete global symmetry [11];
(2) the Yukawa coupling matrices contain non-zero off-
diagonal elements which are naturally suppressed by the
light quark masses [12,13].

In the following sections (Sects. 2 and 3) we discuss at
the two-loop level the constraints on those Yukawa cou-
pling matrix elements under the above two ansatzes, and
we will mainly focus on the latter one. One kind of two-
loop diagrams with double scalar exchanges is studied in
detail and their contributions to g − 2 of the muon are
found to be compatible with the one from the Barr–Zee
diagram. In Sect. 4, combined constraints from g−2 of the
muon and several lepton flavor violating (LFV) processes
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Fig. 1a,b. One-loop diagram contribution to g−2 of the muon.
The dashed curves represent the scalar or pseudo-scalar prop-
agator. a Flavor-conserving Yukawa interactions. b Flavor-
changing Yukawa interactions in which µ changes into τ in
the loop

are obtained. We note that unlike other experiments which
often impose upper bounds of the parameters in the new
physics models, the current data on g − 2 of the muon
may provide non-trivial lower bounds. It is found that the
small lower bound of ∆aµ > 50 × 10−11 will significantly
modify the texture of the Yukawa coupling matrix and
make it deviate from the widely used ansatz in which the
off-diagonal elements are proportional to the square root
of the products of related fermion masses.

2 Muon g − 2
from diagonal Yukawa couplings

The ansatz of zero off-diagonal matrix elements is often
used to avoid the flavor-changing neutral current (FCNC)
at tree level which was originally suggested from kaon
physics, such as K → µ+µ− decay and K0–K

0
mixing.

Such a texture structure of the Yukawa couplings can be
obtained by imposing some kind of discrete symmetries
[11]. The minimal SUSY standard model (MSSM) and the
two-Higgs doublet model (2HDM) of type I and II can be
catalogued into this type. In such models, the Yukawa
interactions are flavor conserving and the couplings are
proportional to the related fermion masses:

Yii =
gmi

2mW
ξi and Yij = 0 (i �= j), (4)

where g is the weak coupling constant and mW is the
mass of the W boson. ξi is the rescaled coupling constant.
In the minimal SUSY model and the 2HDM of type II,
ξi = tanβ(cotβ) for down (up) type fermions.

The corresponding Feynman diagrams contributing to
g − 2 of the muon at one-loop level which is shown in
Fig. 1a, these have recently been discussed and compared
with the current data in [14–16].

As the muon lepton mass is small, i.e., mµ � mφ,
where mφ is the mass of the scalar (φ = h) or pseudo-
scalar (φ = A), the one-loop contribution to g − 2 of the
muon can be written as [17]

∆aµ = ± 1
8π2

m2
µ

m2
φ

ln

(
m2

φ

m2
µ

)
Y 2

ii , (5)

where the sign “+ (−)” is for scalar (φ = h) (pseudo-scalar
φ = A) exchanges. It can be seen from the above equation

γ

γ

µµ µ

t

Fig. 2. Two-loop Barr–Zee diagram contribution to g − 2 of
the muon

that the one-loop scalar contribution is not large enough
to explain the current data. Even for the large value of
ξµ = tanβ ∼ 50, one still needs a very light mass of the
scalar: Mh ∼ 5 GeV, which does not seem to be favored
by the LEP experiment. The situation will be even worse
when both the scalar and pseudo-scalar are included, as
their contributions have opposite signs.

The situation may be quite different if one goes to the
two-loop level. This is because of the well known Barr–Zee
mechanism [18] (see Fig. 2) in which the scalar or pseudo-
scalar couples to a heavy fermion loop. As the Yukawa
couplings are no longer suppressed by the light fermion
mass, the two-loop contributions could be considerable.
Taking the top quark loop as an example, the two-loop
Barr–Zee diagram contribution to g − 2 of the muon is
given by

∆ah
µ =

Ncq
2
t

π2

mµmt

m2
φ

F

(
m2

t

m2
φ

)
YttYµµ, (6)

where Nc = 3 and qt = 2/3 are the color number and the
charge of the top quark, respectively. The integral function
F (z) has the following form [18]:

F (z) =




−1
2

∫ 1

0
dx

1 − 2x(1 − x)
x(1 − x) − z

ln
x(1 − x)

z
for scalar,

1
2

∫ 1

0
dx

1
x(1 − x) − z

ln
x(1 − x)

z
for pseudo-scalar.

(7)

It is noticed that the contributions from the Barr–Zee
diagram through scalar and pseudo-scalar exchanges have
also different signs, negative for the scalar and positive for
the pseudo-scalar, which is just opposite to the one-loop
case. Thus there exists a cancellation between one- and
two-loop diagram contributions. It was found in [19,20]
that the pseudo-scalar exchanging Barr–Zee diagram can
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∆ aµ (× 10-11)

mh

Fig. 3. Contribution to g − 2 of the muon from the two-loop
Barr–Zee diagrams. The three solid curves (from down to up)
correspond to Yµµ (ξµ) = 2 × 10−2 (48.3), 4 × 10−2 (97.6) and
1×10−1 (273.9) respectively. The horizontal lines represent the
1σ allowed range from [3]

overwhelm its negative one-loop contributions and results
in a positive contribution to g − 2. For a sufficient large
value of the coupling, ξµ = tanβ ∼ 50, its contribution can
reach the 2σ experimental bound with mφ ≤ 70 GeV. To
avoid the cancellation between scalar and pseudo-scalar
exchange, the mass of the scalar boson has to be pushed to
be very heavy (typically greater than 500 GeV). In Fig. 3
the numerical calculation of the Barr–Zee diagram contri-
bution to the g−2 of the muon is presented; it agrees with
those results.

3 Muon g − 2
from off-diagonal Yukawa couplings

When imposing the strict discrete symmetries to the
Yukawa interaction, the off-diagonal elements of the
Yukawa coupling matrix are all zero. This is the simplest
way to prevent the theory from tree level FCNC. However,
to meet the constraints from the data on K0–K

0
mixing

and K → µ+µ− the off-diagonal elements do not necessar-
ily have to be zero. An alternative way is to impose some
approximate symmetries such as global family symmetry
[8] on the Lagrangian. This results in the second ansatz of
the Yukawa matrices in which small off-diagonal matrix
elements are allowed, which leads to an enhancement for
many flavor-changing processes. As the constraints from
K0–K

0
mixing are strong, the corresponding off-diagonal

matrix elements should be very small. However, up to now

there are no such strong experimental constraints on the
FCNC processes involving heavier flavors such as c and b
quarks. The possibility of off-diagonal elements associated
with the second and the third generation fermions are not
excluded.

One of the widely used ansatzes of the Yukawa matrix
based on the hierarchical fermion mass spectrum mu,d �
mc,s � mt,b was proposed by Cheng and Sher [12,13].
In this ansatz, the off-diagonal matrix element has the
following form:

Yij =
g
√
mimj

2mW
ξij , (8)

where the ξij are the rescaled Yukawa couplings which
are roughly of the same order of magnitudes for all i, j.
In this ansatz, the scalar or pseudo-scalar mediating the
d–s transition is strongly suppressed by the small factor
(mdms)1/2/(2mW ) � 4 × 10−4, which easily satisfies the
constraints from ∆mK , εK and Γ (K → µ+µ−). As the
couplings grow larger for heavier fermions, the tree level
FCNC processes may give considerable contributions in
B0–B̄0 mixing, µ+µ− → tc, µτ and several rare B and τ
decay modes [21–24].

Unlike the flavor-conserving one-loop diagrams, the
flavor-changing one-loop diagrams (see Fig. 1b) with inter-
nal heavy fermions can give a large contribution to g−2 of
the muon. The reason is that the loop integration yields an
enhancement factor of ∼ mi ln(m2

i /m
2
φ)/(mµ ln(m2

µ/m
2
φ)).

For the internal τ loop, it is a factor of O(10). If one
uses the scaled coupling ξµτ and takes ξµτ � ξµ as in
the “Cheng–Sher” ansatz, the value of the enhancement
factor can reach O(102). In the following discussion, for
simplicity we only take one-loop diagram with an inter-
nal τ loop into consideration as it is dominant over other
fermion loops in the case that the Yukawa couplings are
of the same order of magnitudes.

The expression of the one-loop flavor-changing dia-
gram contribution to the muon’s g − 2 is given by [25]

∆aµ = ± 1
8π2

mµmτ

m2
φ

(
ln
m2

φ

m2
τ

− 3
2

)
Y 2

µτ , (9)

where the sign “+ (−)” is for scalar (φ = h) (pseudo-
scalar φ = A) exchanges. For a detailed discussion of the
one-loop flavor-changing diagram, we refer to [26,27].

As the two-loop contribution to g − 2 of the muon
is more considerable via the Barr–Zee mechanism in the
flavor-conserving case, it is natural to go further by con-
sidering the same diagram with flavor-changing couplings.
However, in the case of g − 2 of the muon, as the initial
and final states are all muons, it is easy to see that the
Barr–Zee diagram with flavor-changing coupling cannot
contribute. It can only appear in a flavor-changing pro-
cess such as µ → eγ.

The non-trivial two-loop diagrams which give a non-
negligible contribution to g − 2 are those diagrams (as
shown in Fig. 9) which have two internal scalars with both
of them coupling to a heavy fermion loop.



580 Y.-F. Zhou, Y.-L. Wu: Lepton flavor-changing scalar interactions and g − 2 of the muon

∆ aµ (× 10-11)

Y

Fig. 4. Comparison between two-loop Barr–Zee pseudo-scalar
and double pseudo-scalar exchanging diagram in the contri-
bution to g − 2 of the muon. The contribution to g − 2 of
the muon is plotted as a function of Y = Yµτ = Yµµ. The
three solid curves (from up to down) correspond to the double
scalar exchanging diagram contribution with scalar (pseudo-
scalar) mass mA = 100, 150 and 200 GeV respectively. The
three dashed curves indicate the ones from two-loop Barr–Zee
diagrams with pseudo-scalar exchange. The horizontal lines
represent the 1σ allowed range from [3]

It is known that large Yukawa couplings between scalar
and heavy fermions can compensate the loop suppressing
factor g2/16π2 and make the Barr–Zee diagram sizable.
The same mechanism also enhances the two-loop double
scalar exchanging diagrams. Furthermore, in the flavor-
changing case, the µ lepton can go into a heavier τ lep-
ton in the lower loop, and this may provide an additional
enhancement in the loop integration. Taking the internal
t-quark loop as an example, the ratio between the contri-
bution to g − 2 of the muon from two-loop double scalar
diagrams relative to the one from Barr–Zee type diagrams
can be roughly estimated by the ratio between the cou-
plings, which gives ∼ ξtξ

2
µτmtmτ/(4ξµm2

W sin2 θW), where
θW is the Weinberg angle with the value sin2 θW � 0.23.
For the typical values of ξt = 1 and ξµτ � ξµ = 30 the ra-
tio is of order 1. Thus this kind of two-loop double scalar
exchanging diagram is compatible with the one of Barr–
Zee type. In the large mt limit, the contribution to g−2 of
the muon from the two-loop double scalar (pseudo-scalar)
exchanging diagram has the following form:

∆aµ = ∓NCmτmµm
2
t

16π4m4
φ

(
−5

2
+ ln

m2
φ

m2
τ

)
Y 2

ttY
2
µτ . (10)

∆ aµ (× 10-11)

mh

(-)

(-)

Fig. 5. Comparison between the one-loop and two-loop dou-
ble scalar exchange diagrams in the contribution to g − 2 of
the muon. The contribution to g − 2 of the muon is plotted
as a function of the scalar mass. The two dashed curves repre-
sent the contribution at one loop with Yµτ (ξµτ ) = 0.12 (70.6)
(up) and 0.08 (47) (down) respectively. The two dotted curves
correspond to the one from the two-loop double scalar dia-
gram with the same couplings. (Note that their contributions
are negative.) The solid curves are the total contributions to
g − 2 from both diagrams. The horizontal lines represent the
1σ allowed range from [3]

The details of the two-loop calculations can be found in
the appendix. Comparing with the one-loop flavor-chang-
ing diagram in the same way, one can see that the contri-
bution from this diagram could be sizable.

For comparison, the contribution to g− 2 of the muon
from two-loop double pseudo-scalar exchanging diagrams
and Barr–Zee diagrams with a pseudo-scalar are shown in
Fig. 4.

To make the two kind of contributions comparable, we
take Yµµ = Yµτ ≡ Y . It can be seen that the contribution
from the former highly depends on the coupling Y and the
scalar mass. In the range 0.05 ≤ Y ≤ 0.15, the contribu-
tion from the double scalar exchanging diagram is much
larger than the one from the Barr–Zee diagram when mA

is about 100 ∼ 150 GeV. It decreases with mA increasing
and becomes quite small when mA ∼ 200 GeV.

In Fig. 5, the contribution to g − 2 of the muon from
two-loop double scalar exchanging diagrams is compared
with the one from the corresponding flavor-changing one-
loop diagrams.

Note that just like the case of the Barr–Zee diagram,
the two-loop double scalar (pseudo-scalar) exchanging di-
agrams give negative (positive) contributions, which have
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Γ (µ→eγ)

mh

Fig. 6. The contribution to the decay µ → eγ from the sum of
one-loop and two-loop double scalar diagrams. The three solid
curves (from down to up) correspond to Yτe = 1×10−6, 3×10−6

and 1×10−5 respectively. The coupling Yµτ is taken to be 0.08.
The horizontal line indicates the experimental upper bound of
µ → eγ

signs opposite to the one from the one-loop scalar (pseudo-
scalar) exchanging diagram. The reason is that a closed
fermion loop always contributes a minus sign. This re-
sults in a strong cancellation between one- and two-loop
diagram contributions in the case of flavor-changing cou-
plings with real Yukawa coupling constants. The allowed
range of the scalar mass will be strongly constrained. Tak-
ing Yµτ = 0.08 (ξµτ � 50), Ytt = 0.67 (ξt � 1) and
∆aµ > 50 × 10−11 as an example, the mass of the scalar
mh lies in the narrow window of ∼ 100 ≤ mh ≤ 200 GeV.

4 Lepton flavor-violation processes
and the texture of the Yukawa matrix

The flavor-changing Yukawa couplings will unavoidably
lead to the enhancement of the decay rates of lepton flavor-
violating processes. such as µ → eγ, τ → µ(e)γ, µ →
e−e−e+ and τ → e−e−e+(µ−µ−µ+). The current exper-
imental data, especially the data of µ → eγ will im-
pose the strongest constraints on the related Yukawa cou-
plings. From the current data the upper bound of the de-
cay µ → eγ is Γ (µ → eγ) ≤ 3.6 × 10−30 GeV [28]. It
constrains the coupling Yeτ(µ) to extremely small values.

In the models with flavor-changing scalar interactions,
the leading contributions to µ → eγ come from the one-
loop flavor-changing diagram, the two-loop double scalar
exchanging diagram and the two-loop flavor-changing
Barr–Zee diagrams.

The effective vertex for the one-loop flavor-changing
scalar interaction reads [29]

Γ one
µ =

1
2(4π)2

mτ

m2
φ

(
ln
m2

φ

m2
τ

− 3
2

)
YµτYτe
̄iσµν
q

ν , (11)

while the one for two-loop double scalar exchange is

Γ two
µ =

NCmτm
2
f

32π4m4
φ

(
ln
m2

φ

m2
τ

− 5
2

)
Y 2

ffY
2
µτ 
̄iσµν
q

ν . (12)

In Fig. 6 the decay rates from the sum of the first two
diagrams are presented as a function of the scalar mass.
In the calculation we take the value of the coupling Ytt =
0.67 (or ξt � 1). The value of Yµτ is taken to be 0.08
(or ξµτ � 50) which is the typical allowed value from the
current data on g − 2. It can be seen from the figure that
the decay rates of µ → eγ constrain the value of Yτe to no
more than 10−6 ∼ 10−5 for 100 ≤ mh ≤ 200 GeV.

Similarly, the value of the coupling Yµe is also con-
strained to be very small by the decay rate µ → eγ. The
reason is that Yµe is associated with the flavor-changing
Barr–Zee diagram in which a muon goes into a tau in
the lower loop. If there is no accidental cancellation with
other diagrams the upper bound of Yµe can be obtained
by assuming that the flavor-changing Barr–Zee diagram
is dominant. The decay rate of µ → eγ from this diagram
alone can be obtained from (6) and is given by

ΓBZ(µ → eγ) = 8αm5
µ

∣∣∣∣∣Ncq
2
t

π2

mµmt

m2
φ

F

(
m2

t

m2
φ

)
YttYµµ

∣∣∣∣∣
2

.(13)

The numerical result is represented in Fig. 7, which shows
that the upper bound of Yµe is also of the order 10−6 ∼
10−5 for 100 ≤ mh ≤ 200 GeV.

With the above constraints on the values of the Yukawa
couplings in the lepton sector, let us discuss the possible
texture of the Yukawa coupling matrix. In the SM with
one Higgs doublet, it is well known that by assuming the
Yukawa matrix to be of the Fritzsch form [31,30] in the
flavor basis, i.e.

Y �


 0

√
m1m2 0√

m1m2 0
√
m2m3

0
√
m2m3 m3


 , (14)

one can reproduce not only the correct quark masses in
the mass eigenstates but also, to a good approximation,
some of the mixing angles. In the models with multi-Higgs
doublets, one can simply extend this Fritzsch parameteri-
zation to all the other Yukawa matrices including the lep-
tons [12]. This results in the ansatz as in (8) with all ξij
being of the same order of magnitude.

It is not difficult to see that such an ansatz may be
challenged by the current experimental data in the lep-
ton sector. This is because in order to explain the possible
large g − 2 of the muon, the off-diagonal elements con-
necting the second and third families should be enhanced,
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Γ (µ→eγ)

mh

Fig. 7. Contribution to the decay µ → eγ from the two-
loop flavor-changing Barr–Zee diagrams. The three solid curves
(from down to up) correspond to Yµe = 3× 10−6, 7× 10−6 and
1 × 10−5, respectively. The horizontal line indicates the exper-
imental upper bound of µ → eγ

while to meet the constraints from µ → eγ, the ones con-
necting the first and second or the first and third families
should be greatly suppressed.

Taking the values of ∆aµ > 50×10−11, mh ∼ 150 GeV
and mA 
 mh as an example, in the case of g − 2 of the
muon, if the flavor-conserving Barr–Zee diagram is playing
a major role, the rescaled coupling ξµ should be as large
as 50 (see Fig. 3). If one assumes that the flavor-changing
coupling is responsible for the large g − 2 of the muon,
ξµτ (Yµτ ) should be about 10 (0.02). On the other hand,
due to the strong constraint from µ → eγ, for the flavor-
changing contribution being the dominant case, ξτe has
to be less than 0.08 when ξµτ (Yµτ ) is taken to have the
typical value of 17.6 (0.03). In the case of a flavor-changing
Barr–Zee diagram being dominant, the Yukawa coupling
ξµe has to be less than 0.24. Thus one finds that

ξµ ∼ ξµτ � O(10),

ξτe ∼ ξµe � O(10−1), (15)

which clearly indicates that the rescaled couplings ξij are
not of the same order of magnitude. In the case of a light
pseudo-scalar mass mA � 150 GeV and mh 
 mA the
results are similar.

From these considerations, it is suggested that the
Yukawa matrices associated with the physical scalar
bosons may take the following form in the mass eigen-
state:

Γ (τ→µγ)

mh

Fig. 8. Prediction of the decay rate τ → µγ from the sum
of one-loop and two-loop double scalar diagrams. The three
solid curves (from down to up) correspond to Yττ : 0.003, 0.01
and 0.03 respectively. The coupling Yµτ is taken to be 0.08.
The horizontal line indicates the experimental upper bound of
τ → µγ

Y � λ2


 O(1) O(λn) O(λn)

O(λn) O(1) O(1)
O(λn) O(1) O(1)


 , (16)

where λ ≈ 0.22 is roughly of the same order; λ is the
Wolfenstein parameter, and n � 2 ∼ 3. With such a pa-
rameterization, one is able to understand all the current
experimental data concerning both g− 2 of the muon and
lepton flavor-changing processes.

If one takes the Yukawa matrix to be of the form in
(16), the decay rate of τ → µγ could be predicted. To a
good approximation, the decay rate can be obtained by
replacing YµτYτe into YττYτµ in (11) and (12).

Assuming τ lepton dominance in the loop, the contri-
butions to τ → µγ are shown in Fig. 8. The current upper
bound on τ → µγ is 3.5× 10−19 GeV [28]. It is found that
the predicted decay rate could reach the current experi-
mental bound. A modest improvement in the precision of
the present experiment for τ → µγ may yield first evi-
dence of lepton family number non-conservation.

In summary, we have studied the g − 2 of the muon
and several lepton flavor violation processes in the mod-
els with flavor-changing scalar interactions. The two-loop
diagrams with double scalar exchanges have been investi-
gated and their contribution to g−2 of the muon is found
to be compatible with the one from the Barr–Zee diagram.
The constraints on the Yukawa coupling constants have
been obtained from the current data of g− 2 of the muon
and several lepton flavor-violation processes. The results
have shown very strong constraints on the flavor-changing
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ττµ µ

t

AB

CD

p2p1

q

l

k

γ

Fig. 9. Two-loop double scalar exchanging diagram

couplings associated with the first generation lepton. The
early ansatz that the flavor-changing couplings are pro-
portional to the square root of the products of related
fermion masses may not be suitable for the lepton sector
if the ∆aµ is found to be > 50 × 10−11. This indicates
that both experimental and theoretical uncertainties need
to be further reduced in order to explore the existence of
new physics from g − 2 of the muon. It has been shown
that an alternative simple parameterization given in (16)
is more attractive to understand the current experimen-
tal data. With such a parameterization, the decay rate of
τ → µγ is found to be close to the current experiment
upper bound.
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Appendix

A Two-loop double scalar diagrams in g − 2
of the muon and µ → eγ

From the Yukawa interaction shown in (3), the q̄qφ vertex
has the following form in d dimensions:

igµε/2(Y1 + Y2γ5), (A.1)

where µ is the renormalization scale and ε/2 = 2 − d/2.
The total amplitude can be written as the product of

lower and upper parts as follows:

Γµ = M · Iµ. (A.2)

The amplitude M for the upper loop is given by

M = −g2µε · 2NC

∫
ddl

(2π)d

× [(A1 +A2γ5)(l/+ � q +mf )(B1 +B2γ5)(l/+mf )]

× 1
(l + q)2 −m2

τ

1
l2 −m2

f

(A.3)

where NC and mf are the color number and mass of the
fermion f . For a t quark f = t and NC = 3. A1,2 and B1,2
are the couplings of the vertex A and B.

The amplitude Iµ for the lower loop is given by

Iµ = −g2µε
̄(p2)(C1 + C2γ5)(� p2− � q +mτ )
× γµ(� p1− � q +mτ )(D1 +D2γ5)
(p1) (A.4)

× 1
(q − p2)2 −m2

τ

· 1
(q − p1)2 −m2

τ

· 1
(q2 −m2

φ)2
,

where C1,2 and D1,2 are the couplings for the vertex C
and D.

After integrating over the lower loop and isolating the
poles from the Feynman integration, we obtain

Γµ =
−8 · 2NCg

4(A1B1 −A2B2)mτmµ

(4π)4

×
∫ 1

0
dx2x(1 − x)

∫ 1

0
dy
∫ 1−y

0
dz

× (y + z)(1 − y − z)

×
(((

2
ε

− 2γE + 2 ln 4π − lnx(1 − x) +
1
2

)
· f1,div

+ 2 · f1,con)

+
1
2
CabR ·

((
2
ε

− 2γE + 2 ln 4π − lnx(1 − x)
)

· f2,div

+ 2 · f2,con

))

× 
̄(C1D1 + C2D2 + (C1D2 + C2D1)γ5)
iσµνkν

2mµ

, (A.5)

with ∆′ = (y+ z)m2
τ + (1 − y− z)m2

φ, R = m2
f/[x(1 − x)]

and Cab = 2A2B2/(A1B1 −A2B2).
In the large mf limit, i.e. m2

f 
 (1/4)m2
φ 
 m2

τ ,
the functions f1,div(con) and f2,div(con) have the following
forms:

f1,div → R

∆′2 , f2,div → − 1
∆′2 ,

f1,con → R

2∆′2

[
1 − ln

(
∆′R
µ4

)]
,

f2,con → 1
2∆′2

[
1 + ln

∆′R
µ4

]
. (A.6)

After the renormalization in the MS scheme for the
upper loop, one finds

Γµ =
−8 · 2NCg

4mτmµ(A1B1 −A2B2)
(4π)4

×
∫ 1

0
dx2x(1 − x)

∫ 1

0
dy
∫ 1−y

0
dz

× (y + z)(1 − y − z)
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×
[
+

3∆′ +R

∆′2

(
− lnx(1 − x) +

1
2

+ F(x) + ln
∆′

µ2

)
+ 2 · f1,con

− 1
∆′2

1
2
CabR

(
− lnx(1 − x) +

1
2

+ F(x) + ln
∆′

µ2

)

+
1
2
CabR

(
2 · f2,con − 1

2

)
+

3∆′ − 2R
2∆′2

]
× 
̄(p2)(C1D1 + C2D2 + (C1D2 + C2D1)γ5)

× iσµνk
ν

2mµ

(p1), (A.7)

with

F(x) = ln
m2

f − x(1 − x)m2
τ

µ2 . (A.8)

In the limit of m2
f 
 (1/4)m2

φ 
 m2
τ , the above equation

can be simplified to

Γµ = −NCg
4mτmµm

2
f (A1B1 +A2B2)

16π4m4
φ

(
−5

2
+ ln

m2
φ

m2
τ

)

×
(

(C1D1 + C2D2)
̄(p2)
iσµνk

ν

2mµ

(p1)

+ (C1D2 + C2D1)
̄(p2)
iσµνk

νγ5

2mµ

(p1)

)
. (A.9)

Therefore its contribution to g−2 of the muon is as follows:

∆aµ = −NCg
4mτmµm

2
f

16π4m4
φ

(
−5

2
+ ln

m2
φ

m2
τ

)

× (A1B1 +A2B2)(C1D1 + C2D2). (A.10)

In the real coupling case, for scalar exchange, one has

gA1 = gB1 = Yff , gC1 = gD1 = Yµτ , (A.11)

and the others are zero. Similarly for pseudo-scalar ex-
change the couplings are

gA2 = gB2 = iYff , gC2 = gD2 = iYµτ . (A.12)

Therefore, the two-loop double scalar (pseudo-scalar) di-
agram’s contribution to ∆aµ is

∆aµ = ∓NCmτmµm
2
f

16π4m4
φ

(
−5

2
+ ln

m2
φ

m2
τ

)
Y 2

ffY
2
µτ . (A.13)

For the decay µ → eγ, the effective vetex is

Γ (µ→eγ)
µ = −NCg

4mτmµm
2
f (A1B1 +A2B2)

16π4m4
φ

×
(

−5
2

+ ln
m2

φ

m2
τ

)
(A.14)

×
(

(C ′
1D1 + C ′

2D2)
̄(p2)
iσµνk

ν

2mµ

(p1)

+ (C ′
1D2 + C ′

2D1)
̄(p2)
iσµνk

νγ5

2mµ

(p1)

)
,

where C ′
1 and C ′

2 are the Yukawa couplings for the τeφ
vertex. The decay rate is then given by

Γ (µ → eγ) =
1

16πmµ

∑∣∣∣eΓ (µ→eγ)
µ εµ

∣∣∣2 . (A.15)
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